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OF THE STRUCTURE OF THE FLOW IN A HYDROCYCLONE
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A numerical investigation of the structure of the flow in a hydrocyclone has been carried out on the basis of
Reynolds equations with the use of various models of turbulence: the k–ε model, the k–ε RNG (ReNormaliza-
tion Group) model, the k–ε model corrected for the Richardson number Ri, and the k–ω model. It is shown
that the distributions of the velocities and pressure in a hydrocyclone obtained with the k–ε Ri model, in
which the influence of the rotation of the flow on the processes of generation/dissipation of turbulence and
the anisotropy of the turbulent pulsations are taken into account, coincide most closely with the experimental
ones.

Apparatus of the hydrocyclone type are widely used in the mineral resource and ore mining and processing
industries for the purpose of separation and classification of inhomogeneous disperse systems. The widespread use of
these apparatus is explained, in many cases, by their simple design, fairly high capacity compared to their small di-
mensions, relatively low cost, and low expenses required for their exploitation.

The present work is a continuation of the investigations begun at the Erlangen University (Germany) with fi-
nancial support from the Alexander von Humboldt Foundation [1–5].

It has been shown earlier that the structure and separation characteristics of the flow in a hydrocyclone are
mainly determined by the flow turbulence. Thus, it is desired to find a turbulence model that would make it possible
to predict the distribution of the velocities and pressure in a hydrocyclone most adequately.

The aim of the present work is to investigate the structure of the flow in a hydrocyclone and perform a com-
parative analysis of four turbulence models: the standard k–ε model [6], the k–ε RNG model [7], the k–ε model cor-
rected for the Richardson number Ri [8], and the k–ω model [9]. This task was a considerable challenge because of
the nonlinearity of the basic equations (Reynolds equations) and the complex geometry of the computational region.
Since three-dimensional effects appear only in a relatively small region near the inlet pipe and the flow in the main
body of the hydrocyclone is almost axially symmetric [10], the changes in the parameters in the tangential direction
can be ignored to simplify the mathematical model and the calculations.

Mathematical Model. The flow field is described using the two-dimensional axisymmetric Reynolds equations
of mass and momentum balance for an average flow:
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The main problem of modeling of turbulence is associated with the determination of the Reynolds stresses.
This problem is most often solved based on the Boussinesq hypothesis. In accordance with this hypothesis, the
Reynolds stresses are linearly related to the average-velocity gradient and, as the proportionality coefficient, the coef-
ficient of turbulent viscosity µt, defined as µt = Cµρk2ε−1, is used [6]. The effective viscosity is determined as the sum
of the molecular and turbulent viscosity, µe = µ0 + µt.

The kinetic turbulent energy k and the rate of its dissipation ε can be determined using the standard k–ε
model of turbulence from the following equations:
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The values of the constants are selected in accordance with the recommendations of [4]: C1 = 1.44, C2 = 1.92, Cµ =
0.09, σk = 1.0, σε = 1.3, and σrϕ = 1.0.

The k–ε RNG model of turbulence [7] is a modification of the standard k–ε model and differs from it by the

values of the constants: C1 = 1.42 − C1RNG, C2 = 1.68, Cµ = 0.085, σk = 0.7179, σε = 0.7179, σrϕ = 1.0, C1RNG =

η(η0 − η)

η0(1 + βη3)
, η0 = 4.38, β = 0.015, and η = √ Ck

 ⁄ µt  
k
ε

.

The k–ε model corrected for the Richardson number Ri [8] has been obtained in the following way. It was

assumed that the turbulent viscosity in the equations for axial motion µrx = µe and rotational motion µrϕ = µe
 ⁄ σrϕ

(σrϕ = 2.5) is nonisotropic, and the constant C2 in Eq. (6) was corrected with the use of the Richardson number Ri

= 
k

ε2 
w2

r
 
∂(wr)

∂r
 for the purpose of more exact description of the influence of the swirling of the flow on the processes

of generation/dissipation of turbulence. The values of the constants and the functions in this model are as follows:

C1 = 1.44, C2 = 1.92(1 − C3Ri), Cµ = 0.09, σk = 1.0, σε = 1.3, and C3 = 0.001.

The k–ε model of turbulence [9] can be used as an alterative to various modifications of the k–ε model. In
it, the frequency of the turbulent pulsations ω = ε ⁄ k is used as the second parameter characterizing the distribution of
turbulence in the flow.

The equations used in this model are similar to the equations of the k–ε model:
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The constants of the model have the following values: C1 = 0.5111, C2 = 0.8333, Cµ = 0.09, σk = 2, σω = 2, and
σrϕ = 1.

Since the system of differential equations is elliptical, to close the problem it is necessary to set conditions at
all the boundaries of the computational region.

The conditions at the inlet (in the inlet pipe) are determined for all the variables. To ensure that the problem
be two-dimensional, it is assumed that the inlet of the hydrocyclone represents a cylindrical surface the height of
which is equal to the diameter of the inlet pipe. The kinetic turbulent energy at the inlet is taken to be proportional
to the kinetic energy of the average flow. Thus, the boundary conditions at the inlet are formulated in the following
way:

v = 
Q

πDcDinρ
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αQ

πDcDinρ
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Q

hinDinρ
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2
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kin
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 .

Here, α = 0.15, λ = 0.005, and Tu = 0.03 are constants of the model.
At the symmetry axis, the radial components of the gradients of all the functions, excluding the radial and

tangential velocities that are equal to zero here, are assumed to be zero:

v = 0 ,   
∂u

∂r
 = 0 ,   w = 0 ,   

∂k

∂r
 = 0 ,   

∂ε
∂r

 = 0 .

The adhesion conditions are fulfilled at the walls of the hydrocyclone and all the velocity components tangen-
tial to the hydrocyclone walls are equal to zero. The derivative of the velocity with respect to the normal to the wall
is also equal to zero. The turbulent characteristics are determined on the assumption that a local equilibrium exists in
the near-wall region:

v = 0 ,   u = 0 ,   w = 0 ,   knw = 
τw

ρ √Cµ
 ,   εnw = 

knw
3 ⁄ 2Cµ

3 ⁄ 4

κrnw
 .

Here, k = 0.4 and rnw is the distance from the hydrocyclone wall to the nearest near-wall node.
At the output of the hydrocyclone (in both the overflow and the underflow) the axial components of the tan-

gential-velocity gradient and of the turbulent characteristics k and ε are assumed to be zero in order that the influence
of the counterflow be excluded. It is assumed that the radial velocity v in the output cross sections is equal to zero.
The pressure p in the overflow is determined on the assumption that the flow is radially equilibrium, whereas the pres-
sure in the underflow is assumed to be equal to the atmospheric pressure. Thus, the boundary conditions in the output
cross sections can be as follows:
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The above-described mathematical model is based on the system of Reynolds equations in dynamic variables.
A finite-difference analog of the system of differential equations has been obtained by integrating them over the con-
trol volume of a finite-difference grid. The calculations were performed with the use of biased grids with 100 nodes
in the radial direction and 300 nodes in the axial direction. The convective terms were approximated using upwind dif-
ferences by the QUICK scheme. The diffusion terms were modeled with the use of an exponential approximation. Be-
cause of the nonlinearity of the system of finite-difference equations, it was solved by the iteration method with a
longitudinal-transverse run in each iteration. The pressure was calculated using the SIMPLE iteration procedure [11].

Results of the Calculations. Based on the above-described mathematical model, we have carried out a nu-
merical investigation of the structure of the flow in a hydrocyclone (Fig. 1). The calculation parameters of the appa-
ratus had values corresponding to the experiments in [10]: Dc = 75 mm, Din = 25 mm, Dof = 25 mm, Duf = 12.5
mm, L1 = 75 mm, L2 = 200 mm, L3 = 25 mm, l1 = 50 mm, l2 = 50 mm, and hin = 4 mm.
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Below we give the most interesting results. From the engineering standpoint, the most important parameters
characterizing the structure of the flow in a hydrocyclone are its capacity and the distribution of flows in it.

The capacity of a hydrocyclone Q characterizes the amount of a suspension which can be processed by it in
a unit time. From the hydraulics standpoint, a hydrocyclone can be considered as a hydraulic resistance in an inlet
pipe. Its capacity depends on the head loss, which is determined, first of all, by the dimensions of the discharge open-
ings. To pass a required amount of a suspension though a hydrocyclone and obtain the desired technological parame-
ters, it is necessary to create a pressure immediately ahead of the inlet pipe which would be able to overcome the
hydraulic resistance in it and the centrifugal pressure arising as a result of the flow rotation. In this case, the major
portion of the head losses are due to the centrifugal pressure. The head losses caused by the hydraulic resistance at
the inlet do not usually exceed 20%.

In the technical literature there are a large number of formulas for calculating the capacity of hydrocyclones.
Some of them are given in monographs [12, 13]. Some literature data and the data of our calculations are presented
in Fig. 2. It is seen from the figure that the computational points constructed in logarithmic coordinates with the use
of different models of turbulence are practically coincident and lie on a straight line. The experimental points are
grouped around the calculated straight line, which sufficiently well predicts the hydrocyclone capacity. The latter in-
creases with increase in the total head. In this case, the slope of the straight line calculated in logarithmic coordinates
is equal to 1/2 and the hydrocyclone capacity is proportional to the square root of the total head.

The ratio between the liquid-flow rates in the overflow and the underflow is a major preoccupation of the
study of the hydrocyclone operation. If it were possible to develop a method of exactly determining the distribution of
liquid volumes between the overflow and the underflow of a hydrocyclone by the given initial parameters, this would
make the calculation of the other parameters much simpler.

The distribution of liquid volumes between the overflow and the underflow (split) S = Quf
 ⁄ Qin is determined

first of all by the ratio between the diameters of the discharge openings Duf
 ⁄ Dof. However, at a constant discharge

Fig. 1. External view and diagram of a hydrocyclone.

Fig. 2. Capacity of the hydrocyclone (m3/sec): 1–3) experimental data of [14]
(1), [15] (2), and [16] (3); 4–7) calculation data obtained with the k–ε Ri
model (4), the standard k–ε model (5), the k–ε RNG model (6), and the k–ω
model (7); 8) average value of the calculation data.
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ratio, the split of a hydrocyclone depends on a number of conditions, among which are the granulometric composition
and the weight content of the solid phase in the suspension, the pressure at the inlet, and the geometric parameters and
design of the hydrocyclone.

In the majority of cases, the hydrocyclone split was investigated for hydrocyclones of small dimensions oper-
ating on water. Some results of such investigations are presented in Fig. 3. As is seen from the figure, all of the
above-described four models of turbulence give practically the same result. It is also seen that the experimental data
agree closely with the calculation data, except for the data of [17], which, evidently, have been obtained for a hydro-
cyclone working on a suspension.

In addition to the integral parameters, it is also interesting to consider the distributions of the turbulence, ve-
locity, and pressure characteristics in a hydrocyclone.

It is important to know the turbulence characteristics of a hydrocyclone, because the structure of the flow and
the motion of particles in it are substantially dependent on the flow turbulence. Unfortunately, the turbulence in a hy-
drocyclone was not experimentally investigated. This is explained by the fact that it is difficult to measure pulsating
velocities. Therefore, only the theoretical analysis can make up for this deficiency.

Figure 4 shows isolines of kinetic turbulent energy in a hydrocyclone. It is seen from the figure that the ki-
netic turbulent energy has highest values at the lower edge of the vortex tube where the flow turns and the velocity
gradients are very large. Then, because of the convection, turbulence is carried to the lower part of the hydrocyclone

Fig. 3. Distribution of the liquid flow rate between the overflow and the un-
derflow versus the ratio between the diameters of the discharge openings: 1–4)
experimental data of [13] (1), [13] (2), [17] (3), and [18] (4); 5–8) calculation
data obtained with the k–ε Ri model (5), the standard k–ε model (6), the k–ε
RNG model (7), and the k–ω model (8); 9) average value of the calculation
data.

Fig. 4. Isolines of kinetic turbulent energy in the hydrocyclone (k–ε Ri model),
m2 ⁄ sec2.
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and gradually decays. It is interesting to note that the increase in the kinetic turbulent energy in the neighborhood of
the underflow is due to the inflow of free air to the central part of the underflow and the formation of an air column.

The isolines in Fig. 4 have been constructed using the k–ε model of turbulence. The other models of turbu-
lence give qualitatively the same turbulent-energy distributions. The quantitative differences between them can be
judged from Fig. 5a, in which radial turbulent-energy distributions calculated with the use of different models of tur-
bulence are shown. As is seen from this figure, the kinetic turbulent-energy distributions calculated with the standard
k–ε model, the k–ε RNG model, and the k–ω model are practically the same (analogous results have been obtained for
the pressure distribution and the distributions of the axial and tangential velocities). At the same time, the k–ε Ri
model gives higher values of the kinetic turbulent energy. This can be explained by the fact that, in it, the influence
of swirling of the flow on the processes of turbulent-energy generation/dissipation is taken into account. It is known
[19] that the centrifugal forces arising in swirling flows can be active, conservative, or indifferent with respect to the
action on the flow turbulization. The Richardson number can be used as a characteristic of such an action.

The centrifugal forces cause an additional turbulization of the flow in the channel at Ri > 0, aid the relami-
narization of the flow at Ri < 0, and have no influence on the flow at Ri = 0.

An analysis of the radial distribution of the tangential velocity (Fig. 5b) has shown that at the core of the
flow this velocity increases smoothly from zero at the flow axis to any maximum value in the peripheral part of the
flow, and then w decreases because of the adhesion to the wall. It should be noted that, at the core of the flow, the
radial distribution of the tangential velocity can be modeled by the dependence w = arn, where a and n are any posi-
tive constants. Thus, Ri > 0 at the core of the flow. This explains the higher values of the kinetic turbulent energy ob-
tained with the use of the k–ε Ri model.

Fig. 5. Radial distribution of the characteristic of the flow in the hydrocyclone:
1) k–ε Ri model; 2) standard k–ε model; 3) k–ε RNG model; 4) k–ω model;
5) experimental data; a) kinetic turbulent energy; b) tangential velocity; c)
pressure; d) axial velocity.

321



The tangential velocity in the conic part of the hydrocyclone increases with decrease in the radius of the flow
rotation and can exceed the velocity of the inflow at the interface between the outer and inner flows. The calculations
have shown that the tangential velocity increases with increase in the pressure at the inlet and with decrease in the
diameter of the discharge opening.

The k–ε Ri model gives higher tangential velocities than other models of turbulence, which is explained by
the fact that it takes into account the anisotropy of the swirling turbulent flow which manifests itself as a decrease in
the viscous-stress-tensor component µeϕ by a factor of 2.5. The experimental distributions of the tangential velocity ob-
tained in [10] lie between the distributions predicted by the k–ε Ri model and the other models. In this case, the data
obtained with the k–ε Ri model of turbulence agree most closely with the experimental data.

Figure 5c shows a radial distribution of the pressure in the hydrocyclone in the four different cross sections.
The pressure in the near-axis region is close to the atmospheric pressure. In this case, the calculation of the pressure
with the use of the standard k–ε model, the k–ε RNG model, and the k–ω model has shown that the pressure in the
near-axis region is higher than the atmospheric pressure. The data obtained with the k–ε Ri model point to a rarefaction
in the near-axis region: the pressure in this region is lower than the atmospheric pressure, which correlates well with
the experimental data [20]. When one (or both) discharge openings are opened, air is drawn in to this zone, with the
result that an air column is formed. Thus, the k–ε Ri model of turbulence makes it possible to calculate the formation
of an air column in a hydrocyclone. The pressure in the peripheral region increases sharply and reaches the maximum
value in the neighborhood of the wall. The pressure changes insignificantly in the axial direction as compared to the
changes in it in the radial direction; this being so, the isobars are practically parallel to the hydrocyclone axis.

Figure 5d shows experimental and calculated distributions of the axial velocity in the four cross sections of
the hydrocyclone. The axial velocities in all the horizontal cross sections positioned lower than the outlet pipe increase
in the direction from the hydrocyclone wall to the near-axis zone. The velocity values change from the positive to
negative, passing though zero at the center of the hydrocyclone radius. In the region positioned higher than the outlet
pipe, near its wall, the axial velocities decrease. Thus, there exists a conical surface, on which the axial velocity of the
flow is zero. The liquid inside this surface moves up, and the liquid outside it moves to the underflow. The absolute
velocity of the external flow is lower than that of the internal flow. Approximately at the center of the conical part of
the hydrocyclone, the liquid moves from the external flow to the internal flow, with the result that the velocity of the
latter increases.

The calculations performed with the use of the standard k–ε model, the k–ε RNG model, and the k–ω model
have shown that liquid flows out of the hydrocyclone with no ejection of air from outside, but this is in contradiction
with the experimental data. A more real pattern has been obtained with the use of the k–ε Ri model of turbulence in
which the turbulent viscosity is assumed to be nonisotropic and the constant C2 in the equation for ε is corrected for
the Richardson number. It is seen from Fig. 5d that the k–ε Ri model of turbulence gives a more real pattern of the
flow. At the output of the hydrocyclone (in both the overflow and the underflow) a certain amount of air enters the
apparatus. Even though these features of the flow are close to those observed in experiments, the internal structure of
the flow differs substantially from the real one. For example, the calculated dimensions of the air-circulation zones in
the neighborhood of the overflow and the underflow are substantially smaller than the experimental ones.

Thus, the turbulence models used at present for calculating hydrocyclones need further improvements. None-
theless, our analysis shows that the k–ε Ri model of turbulence can be used for calculating the characteristics of the
flow in a hydrocyclone.

This work was carried out with financial support from the Ministry of Industrial Science of the Russian Fed-
eration (grant of the President of the Russian Federation No. MD-197.2003.08) and the Alexander von Humboldt
Foundation (Germany).

NOTATION

C1, C1RNG, C2, Cµ, C3, parameters of the turbulence model; Dc, diameter of the hydrocyclone, mm; Din, di-
ameter of the inlet pipe, mm; Dof, diameter of the outlet pipe, mm; Duf, diameter of the underflow, mm; Gk, dissipa-
tion function, J/(m3⋅sec); hin, width of the inlet pipe, mm; k, kinetic turbulent energy, J/kg; L1, length of the
cylindrical section, mm; L2, length of the conical section, mm; L3, length of the post-cyclone, mm; l1, total length of
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the outlet pipe, mm; l2, length of the outlet-pipe part positioned deeper in the hydrocyclone, mm; Q, mass flow rate,
kg/sec; p, pressure, Pa; r, radial coordinate, m; S, distribution of liquid volumes between the overflow and the under-
flow; u, axial velocity, m/sec; v, radial velocity, m/sec; w, tangential velocity, m/sec; x, axial coordinate, m; ε, rate of
turbulent-energy dissipation, J/(kg⋅sec); µ0, dynamic molecular viscosity, kg/(m⋅sec); µe, effective viscosity, kg/(m⋅sec);
µt, turbulent viscosity, kg/(m⋅sec); k, Ka′ rma′n constant; ρ, density, kg/m3; σk, σε, σrϕ, parameters of the turbulence
model; τw, stresses on the wall, kg/(m⋅sec2); ω, frequency of turbulent pulsations, sec−1; Ri, Richardson number; Tu,
turbulence parameter. Subscripts; c, cyclone; env, environment; e, effective; in, input; nw, near-wall; of, overflow; t,
turbulent; uf, underflow; w, wall.
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